
IN late 2013, an international team of scientists was in the 
  midst of simulating a collapsing cloud of 15,000 bubbles 

using Lawrence Livermore’s Sequoia supercomputer, when the 
calculations suddenly stopped. In quick response, the team turned 
to a Livermore software tool called STAT (Stack Trace Analysis 
Tool) to locate which of more than 6 million computing threads 
(calculations) was causing the problem. Within a few minutes, 
STAT traced the hangup to a particular microprocessor core 
(computing engine). The team went on to complete the pioneering 
simulation and win the 2013 Golden Bell Prize for outstanding 
achievement in high-performance computing (HPC). (See S&TR, 
January/February 2014, p. 20.)

STAT is the product of a small team of computer scientists 
comprising the Development Environment Group (DEG) in 
Livermore’s Computation Directorate. In addition to 
STAT, the group has developed tools designed 
to boost performance and productivity such as 
AutomaDeD and SPINDLE. Another set of tools 

is being developed under the PRUNER project to help with the 
reproducibility of large simulations. The group works closely 
with the Laboratory’s Center for Applied Scientific Computing, 
which supports the demanding computing requirements of 
Livermore scientists. 

The group’s tools are designed to work on massively parallel 
machines such as Sequoia, one of the world’s most powerful 
supercomputers. Sequoia has 1,572,864 processing units, or cores, 
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Lawrence Livermore scientists and collaborators set a new 

supercomputing record in fluid dynamics by resolving unique 

phenomena associated with a cloud of collapsing bubbles. The 

work earned the team the 2013 Gordon Bell Prize. See the 

simulation at http://www.youtube.com/watch?v=zfG9soIC6_Y. 

(Image courtesy of Petros Koumoutsakos zVg/CSE Laboratory, 

Swiss Federal Institute of Technology Zurich.)
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and a peak performance speed of 20 petaflops 
(quadrillion floating-point operations per second). 
This processing power is compressed into 
96 racks, each the size of a large refrigerator. 
(See S&TR, July/August 2013, pp. 4–13.)

Massively parallel supercomputers break 
a problem into tiny parts that are solved 
simultaneously. For many applications, such 
as simulating complex physical phenomena, this 
computer architecture has replaced vastly slower 
serial processing, in which tasks are performed 
sequentially by a single processing element. The 
Laboratory has been a leader in using parallel 
supercomputers since their inception. As a result, 
advanced simulations at Livermore have become 
as important to scientific exploration as theory 
and experiment.

According to computer scientist and DEG 
member Dong Ahn, developing tools for 
supercomputers requires expertise that resides 
in just a few research centers worldwide. This 
expertise includes skills in programming and 
debugging massively parallel supercomputers as 
well as anticipating the tools needed for next-
generation machines, on which applications are 
expected to routinely use millions of processors. 
As parallel supercomputers become more 
powerful, Livermore computer scientists develop 
new methods to maximize the potential of such machines. Says 
Ahn, “Livermore is an applied laboratory, and our research must 
have practical value to users.” 

Debugging Six Million Calculations
Many of DEG’s tools focus on finding bugs. In the world 

of parallel computing, debugging has become a difficult and 
complex task. A massively parallel application is a big search 
space in which errors can reside. Sequoia has nearly 1.6 million 
cores, each running four threads of execution (calculations). Often 
bugs emerge only at large scales, overwhelming users with the 
complexity of the task to isolate the problem. “If something breaks, 
we need to know quickly what went wrong in one or more of 
6 million threads,” says HPC systems engineer Adam Bertsch. “We 
also need to know why it went wrong.” 

“Many traditional debugging techniques are precluded by the 
sheer amount of resources that must be examined,” says computer 
scientist Scott Futral, DEG leader and along with Bertsch, member 
of the Gordon Bell Prize–winning simulation team. Because 
Livermore applications are continually refined, developers can 

spend 25 percent or more of their time debugging and optimizing 
codes, a practice that has become increasingly costly. 

In response to the need for an advanced debugging tool aimed 
at machines such as Sequoia, DEG members collaborated with 
researchers from the University of Wisconsin and the University of 
New Mexico to design STAT. This highly scalable tool is capable 
of identifying errors in computer codes running on machines 
with more than 1 million processor cores. In 2011, STAT won an 
R&D 100 Award as one of the year’s top innovations. (See S&TR, 
October/November 2011, pp. 14–15.)

STAT is used throughout the Department of Energy’s 
supercomputer community. It is most effective for diagnosing 
calculations that are “hung up,” although the tool has also 
proved useful for isolating other problems. STAT indicates 

This computer screen shot shows how the STAT tool analyzed 

542,288 calculations. STAT formed a graphical “tree” representing a 

snapshot of an application that was hung up. The tree revealed the 

problem was in a single calculation (on the right, in blue) and resulted 

from a programming error. 
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processes according to their relative progress. This work 
involves developing and rapidly detecting problems when system 
performance deviates statistically from the model. AutomaDeD 
creates probabilistic behavioral models of how simulations should 

where in the code all of the processes are at a given point in 
time, giving the user insight into where the bug may lie. With a 
strong graphical user interface, STAT produces two-dimensional 
(2D) and 3D graphs in the form of treelike structures. The 2D 
tree represents a single snapshot of the entire application, while 
the 3D tree presents a series of snapshots from the application 
captured over time. 

STAT played a significant role in validating Sequoia as racks 
of nodes were added over several months. “As we added racks, 
we had the opportunity to prove STAT’s scalability,” says Ahn. 
The tool helped both early users and system integrators of Sequoia 
to quickly isolate errors, including issues that manifested only 
at extremely large scales. In one case, STAT rapidly diagnosed a 
deadlock in a simulation using over 500,000 cores, allowing the 
user, who had tried unsuccessfully for weeks to solve the problem 
using a traditional method, to complete his project on schedule.  

For the simulation project that earned the Gordon Bell 
Prize, STAT helped researchers achieve an ultrahigh-resolution 
simulation of cloud cavitation collapse. That work set a simulation 
record in fluid dynamics with 14.4 petaflops of sustained 
performance. When the calculation suddenly stopped, recalls 
Bertsch, STAT quickly scanned all 6 million calculations and 
isolated a problem in one of the processor cores. The team replaced 
the processor that contained the identified core, and the application 
was able to proceed. The resulting simulation represented a 
150-fold improvement over previous simulations for this type of 
application and a 20-fold reduction in time to complete the task. 

Although it has proven itself many times, STAT is considered a 
“lightweight” tool that may not always locate a bug if the problem 
is something other than a hung calculation. For this reason, the 
group has extended STAT’s debugging features with the DysectAPI 
tool. Still in early testing, DysectAPI is designed to enable users 
to “program their intuition” so as to construct various higher level 
debug queries. The tool represents a new approach to debugging 
a computer program that runs on more than 100,000 processors. 
The method screens out unnecessary information to allow the user 
to rapidly zero in on the cause of a crash, fault, or other bug. Ahn 
says that one could use STAT to first perform a “triage” to locate 
the general area of the problem and then apply the DysectAPI tool 
to pinpoint the problem. 

Increasing Computational Efficiency
DEG experts have also developed AutomaDeD, a tool that 

uses artificial intelligence to automate the debugging process 
for massive simulations. AutomaDeD has two major functions: 
identifying abnormal computational tasks and regions of 
code, and finding the least-progressed task. The first function 
is accomplished by detecting outliers and the second by ordering 
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The AutomaDeD tool uses artificial intelligence to go beyond STAT and 

automate debugging when hundreds of thousands of tasks are being 

performed simultaneously. Message passing interface (MPI) is used by 

Livermore’s Sequoia and other massively parallel supercomputers to pass 

information among the machine’s hundreds of thousands of computing 

engines or cores. AutomaDeD identifies abnormal computational tasks and 

malfunctioning regions of code by detecting outliers (bottom left) as well as 

the least-progressed tasks (bottom right). 
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(CORAL) national laboratories will deliver these machines. 
Livermore’s system will join Sequoia in serving the National 
Nuclear Security Administration’s Advanced Simulation and 
Computing Program in support of nuclear stockpile stewardship. 
The next-generation system will perform up to 200 peak petaflops, 
about 10 times faster than Sequoia’s 20 petaflops. 

CORAL represents an important step toward the long-awaited 
exascale (extreme scale) systems. Ahn says that although 
supercomputer simulations are used in virtually every research 
area at Lawrence Livermore, many scientific challenges require 
computing at the exascale (1018 flops). These exascale systems, 
which are likely to debut at Livermore and other Department of 
Energy national laboratories early in the next decade, will deploy 
millions of processing elements or cores. Because of their size, 
simulations run on exascale machines will present challenges in 
diagnosing both software and hardware faults, problems to which 
traditional methods and tools are unsuited. 

Ahn emphasizes the role played by academic partners, including 
the University of Wisconsin and the University of New Mexico 
for STAT; the Technical University of Denmark for DysectAPI; 
Purdue University for AutomaDeD; the Jülich Supercomputing 
Centre in Germany for SPINDLE; and the University of Utah for 
PRUNER. In the same collaborative spirit, all supercomputing 
tools developed at Livermore are open source, meaning anyone can 
use them and are invited to improve them.

With an eye on the fast-changing supercomputer future, 
Livermore computer scientists are preparing for new generations 
of giant machines. In particular, the onset of extreme computing 
may require equally extreme software tools, but Ahn and his 
colleagues are confident those tools will be in hand.

—Arnie Heller
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SPINDLE, STAT (Stack Trace Analysis Tool).

For further information contact Dong Ahn (925) 422-1939 

(ahn1@llnl.gov).

work. When a failure occurs, these models are analyzed to find the 
origin of the failure.  

SPINDLE, another tool from DEG, addresses problems that can 
occur when millions of cores simultaneously open an application 
consisting of thousands of shared libraries. The tool builds a cache 
server to quickly send data from the libraries to the compute nodes. 
Ahn explains that many applications retrieve libraries of code 
and data that are shared by every processor, which can greatly 
slow down processing. SPINDLE’s novel approach to loading 
coordinates simultaneous file system operations so that the file 
system does not become a bottleneck. This tool is an example 
of middleware infrastructure, which sits “on top” of system 
software. SPINDLE has proven to be highly scalable. In one test, 
system performance at 64 nodes without SPINDLE was similar 
to system performance at 1,280 nodes with SPINDLE—a 20-fold 
improvement. 

DEG scientists, in collaboration with the University of Utah, 
are also studying the reproducibility of large simulations under 
a project called PRUNER. This work is focused on obtaining a 
fundamental understanding of simulation failures that occur 
only occasionally, or seemingly without a pattern, and then 
developing tools to detect and remedy them. Ahn says it may 
seem counterintuitive, but when a large supercomputer duplicates 
the same long string of calculations, it can occasionally give 
slightly different results, or failures can occur such as a crash. 
This so-called nondeterminism is often the bane of parallel 
software development, and it can be costly to fix. Many sources 
of nondeterminism exist such as the sheer scale of computing, a 
programmer’s assumptions, and the order in which calculations are 
performed. Under the PRUNER project, tools are being developed 
to detect, control, and eliminate sources of nondeterminism. 
“These tools would be helpful in validating programs,” says Futral. 

Anticipating CORAL
The group is already anticipating the next generation of 

massively parallel supercomputers, scheduled to appear in 2017. 
A collaboration of Oak Ridge, Argonne, and Lawrence Livermore 




